Dps Is a Stationary Phase-Specific Protein of Escherichia coli Nucleoid

نویسندگان

  • Ali Azam Talukder
  • Akira Ishihama
  • A. A. Talukder
  • A. Ishihama
چکیده

Bacterial genomic DNA is highly organized into one or few compacted bodies known as nucleoid, which is composed of DNA, RNA and several DNA-binding proteins. These DNA-binding proteins require essential alterations in their expression during stationary phase of growth in order to respond to stressful environmental conditions. Dps (DNA-binding protein from starved cells) is one of such DNA-binding proteins, which accumulates most when E. coli cells reach to the stationary phase. Here, we have characterized Dps protein under various growth phases. Immunofluorescent microscopic observation reveals that Dps plays a key role in final round of genome compaction during the stationary phase. Similar results are also obtained by Western immunoblot analysis, after quantification of Dps protein from the exponential phase and early stationary phase nucleoid bound fractions, separated by sucrose density gradient centrifugation. Our results support the conclusion that Dps occupies more than half of the stationary phase nucleoid in E. coli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid.

The genome DNA of Escherichia coli is associated with about 10 DNA-binding structural proteins, altogether forming the nucleoid. The nucleoid proteins play some functional roles, besides their structural roles, in the global regulation of such essential DNA functions as replication, recombination, and transcription. Using a quantitative Western blot method, we have performed for the first time ...

متن کامل

Dimerization and DNA-dependent aggregation of the Escherichia coli nucleoid protein and chaperone CbpA

The Escherichia coli curved DNA-binding protein A (CbpA) is a nucleoid-associated DNA-binding factor and chaperone that is expressed at high levels as cells enter stationary phase. Using a combination of genetics, biochemistry, structural modelling and single-molecule atomic force microscopy we have examined dimerization of, and DNA binding by, CbpA. Our data show that CbpA dimerization is driv...

متن کامل

Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscopy.

A small container of several to a few hundred microm3 (i.e. bacterial cells and eukaryotic nuclei) contains extremely long genomic DNA (i.e. mm and m long, respectively) in a highly organized fashion. To understand how such genomic architecture could be achieved, Escherichia coli nucleoids were subjected to structural analyses under atomic force microscopy, and found to change their structure d...

متن کامل

Twelve Species of the Nucleoid-associated Protein from Escherichia coli

The genome of Escherichia coli is composed of a single molecule of circular DNA with the length of about 47,000 kilobase pairs, which is associated with about 10 major DNA-binding proteins, altogether forming the nucleoid. We expressed and purified 12 species of the DNA-binding protein, i.e. CbpA (curved DNA-binding protein A), CbpB or Rob (curved DNA-binding protein B or right arm of the repli...

متن کامل

Importance of RpoS and Dps in survival of exposure of both exponential- and stationary-phase Escherichia coli cells to the electrophile N-ethylmaleimide.

The mechanisms by which Escherichia coli cells survive exposure to the toxic electrophile N-ethylmaleimide (NEM) have been investigated. Stationary-phase E. coli cells were more resistant to NEM than exponential-phase cells. The KefB and KefC systems were found to play an important role in protecting both exponential- and stationary-phase cells against NEM. Additionally, RpoS and the DNA-bindin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014